Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Ann Am Thorac Soc ; 17(5): 563-572, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32125874

RESUMEN

Rationale: In a previous trial (MOSES [Multicenter Ozone Study of oldEr Subjects]), 3 hours of controlled ozone (O3) exposure caused concentration-related reductions in lung function with evidence of airway inflammation and injury, but without convincing evidence of effects on cardiovascular function. However, the subjects' exposures to indoor and outdoor air pollution in the hours and days before each controlled O3 exposure may have modified biomarker responses to the controlled O3 exposures.Objectives: We sought to determine whether personal measures of nitrogen dioxide (NO2) and O3, or ambient concentrations of O3, particulate matter ≤2.5 µm in aerodynamic diameter, NO2, carbon monoxide (CO), and sulfur dioxide (SO2) in the 72 and 96 hours before the exposure visit modified biomarker responses to controlled O3 exposure.Methods: MOSES subjects were exposed for 3 hours in random order to clean air containing 0 ppb O3, 70 ppb O3, or 120 ppm O3, alternating 15 minutes of moderate exercise with 15 minutes of rest. Cardiovascular and pulmonary endpoints (biomarkers of autonomic function, repolarization, ST segment change, arrhythmia, prothrombotic vascular status, systemic inflammation, vascular function, pulmonary function, oxidative stress, and lung injury) were measured on the day before, the day of, and up to 22 hours after each exposure. We evaluated whether ambient pollutant concentrations in the 96 hours before the pre-exposure visit modified pre- to post-exposure lung function biomarker responses to the controlled O3 exposures, using tertiles of passive personal exposure samplers (PES) of O3 and NO2, ambient air pollutant concentrations, and mixed effects linear regression. We also similarly explored the effect modification of controlled O3 effects on biomarkers of other MOSES outcome groups in the same way. Although we used P < 0.01 to define statistical significance, we did not formally correct for multiple comparisons.Results: The effects of MOSES controlled O3 exposures on forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were modified by ambient NO2 and CO, and PES NO2. Reductions in FEV1 and FVC were observed only when these concentrations were in the "medium" or "high" tertile in the 72 hours before the pre-exposure visit. There was no such modification of the effect of controlled O3 exposure on any other cardiopulmonary outcome group.Conclusions: Reductions in markers of lung function, but not other pathways, by the MOSES controlled O3 exposure were modified by ambient NO2 and CO, and PES NO2, and these reductions were observed only when these pollutant concentrations were elevated in the hours and days before the pre-exposure visit.Clinical trial registered with ClinicalTrials.gov (NCT01487005).


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Inflamación/inducido químicamente , Exposición por Inhalación/efectos adversos , Pulmón/fisiopatología , Ozono/efectos adversos , Anciano , Biomarcadores/sangre , Femenino , Humanos , Inflamación/sangre , Modelos Lineales , Masculino , Persona de Mediana Edad , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Estudios Prospectivos , Pruebas de Función Respiratoria
3.
PLoS One ; 14(9): e0222601, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31553765

RESUMEN

The evidence that exposure to ozone air pollution causes acute cardiovascular effects is mixed. We postulated that exposure to ambient levels of ozone would increase blood markers of systemic inflammation, prothrombotic state, oxidative stress, and vascular dysfunction in healthy older subjects, and that absence of the glutathione S-transferase Mu 1 (GSTM1) gene would confer increased susceptibility. This double-blind, randomized, crossover study of 87 healthy volunteers 55-70 years of age was conducted at three sites using a common protocol. Subjects were exposed for 3 h in random order to 0 parts per billion (ppb) (filtered air), 70 ppb, and 120 ppb ozone, alternating 15 min of moderate exercise and rest. Blood was obtained the day before, approximately 4 h after, and approximately 22 h after each exposure. Linear mixed effect and logistic regression models evaluated the impact of exposure to ozone on pre-specified primary and secondary outcomes. The definition of statistical significance was p<0.01. There were no effects of ozone on the three primary markers of systemic inflammation and a prothrombotic state: C-reactive protein, monocyte-platelet conjugates, and microparticle-associated tissue factor activity. However, among the secondary endpoints, endothelin-1, a potent vasoconstrictor, increased from pre- to post-exposure with ozone concentration (120 vs 0 ppb: 0.07 pg/mL, 95% confidence interval [CI] 0.01, 0.14; 70 vs 0 ppb: -0.03 pg/mL, CI -0.09, 0.04; p = 0.008). Nitrotyrosine, a marker of oxidative and nitrosative stress, decreased with increasing ozone concentrations, with marginal significance (120 vs 0 ppb: -41.5, CI -70.1, -12.8; 70 vs 0 ppb: -14.2, CI -42.7, 14.2; p = 0.017). GSTM1 status did not modify the effect of ozone exposure on any of the outcomes. These findings from healthy older adults fail to identify any mechanistic basis for the epidemiologically described cardiovascular effects of exposure to ozone. The findings, however, may not be applicable to adults with cardiovascular disease.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Endotelio Vascular/efectos de los fármacos , Inflamación/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Ozono/efectos adversos , Trombosis/inducido químicamente , Anciano , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Inflamación/sangre , Exposición por Inhalación/efectos adversos , Masculino , Persona de Mediana Edad , Activación Plaquetaria/efectos de los fármacos
4.
Sci Rep ; 9(1): 1946, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760868

RESUMEN

Previous studies have reported increased risks of myocardial infarction in association with elevated ambient particulate matter (PM) in the previous hour(s). However, whether PM can trigger mechanisms that act on this time scale is still unclear. We hypothesized that increases in PM are associated with rapid changes in measures of heart rate variability and repolarization. We used data from panel studies in Augsburg, Germany, and Rochester, New York, USA, and two controlled human exposure studies in Rochester. Data included ECG recordings from all four studies, controlled exposures to (concentrated) ultrafine particles (UFP; particles with an aerodynamic diameter <100 nm) and ambient concentrations of UFP and fine PM (PM2.5, aerodynamic diameter <2.5 µm). Factor analysis identified three representative ECG parameters: standard deviation of NN-intervals (SDNN), root mean square of successive differences (RMSSD), and T-wave complexity. Associations between air pollutants and ECG parameters in the concurrent and previous six hours were estimated using additive mixed models adjusting for long- and short-term time trends, meteorology, and study visit number. We found decreases in SDNN in relation to increased exposures to UFP in the previous five hours in both of the panel studies (e.g. Augsburg study, lag 3 hours: -2.26%, 95% confidence interval [CI]: -3.98% to -0.53%; Rochester panel study, lag 1 hour: -2.69%; 95% CI: -5.13% to -0.26%) and one of the two controlled human exposure studies (1-hour lag: -13.22%; 95% CI: -24.11% to -2.33%). Similarly, we observed consistent decreases in SDNN and RMSSD in association with elevated PM2.5 concentrations in the preceding six hours in both panel studies. We did not find consistent associations between particle metrics and T-wave complexity. This study provided consistent evidence that recent exposures to UFP and PM2.5 can induce acute pathophysiological responses.


Asunto(s)
Frecuencia Cardíaca/efectos de los fármacos , Material Particulado/efectos adversos , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Simulación por Computador , Análisis Factorial , Femenino , Alemania , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Persona de Mediana Edad , New York , Tamaño de la Partícula , Material Particulado/análisis
5.
Am J Respir Crit Care Med ; 199(8): 940-941, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30480478
6.
Viruses ; 10(8)2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103427

RESUMEN

Monocytes-macrophages and lymphocytes are recruited to the respiratory tract in response to influenza virus challenge and are exposed to the virus during the establishment of immune defenses. The susceptibility of human lymphocytes to infection was assessed. The presence of monocytes-macrophages was required to attain infection of both resting and proliferating lymphocytes. Lymphocyte infection occurred in the context of immune cell clusters and was blocked by the addition of anti-intercellular adhesion molecule-1 (ICAM-1) antibody to prevent cell clustering. Both peripheral blood-derived and bronchoalveolar lymphocytes were susceptible to infection. Both CD4⁺ and CD8⁺ T lymphocytes were susceptible to influenza virus infection, and the infected CD4⁺ and CD8⁺ lymphocytes served as infectious foci for other nonpermissive or even virus-permissive cells. These data show that monocytes-macrophages and both CD4⁺ and CD8⁺ lymphocytes can become infected during the course of an immune response to influenza virus challenge. The described leukocyte interactions during infection may play an important role in the development of effective anti-influenza responses.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Comunicación Celular/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Adulto , Líquido del Lavado Bronquioalveolar/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Pulmón/inmunología , Pulmón/virología , Activación de Linfocitos , Macrófagos/virología , Masculino , Monocitos/virología , Proteínas Virales/inmunología , Adulto Joven
7.
Environ Int ; 119: 193-202, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980042

RESUMEN

BACKGROUND: To date, there have been relatively few studies of acute cardiovascular responses to controlled ozone inhalation, although a number of observational studies have reported significant positive associations between both ambient ozone levels and acute cardiovascular events and long-term ozone exposure and cardiovascular mortality. OBJECTIVES: We hypothesized that short-term controlled exposure to low levels of ozone in filtered air would induce autonomic imbalance, repolarization abnormalities, arrhythmia, and vascular dysfunction. METHODS: This randomized crossover study of 87 healthy volunteers 55-70 years of age was conducted at three sites using a common protocol, from June 2012 to April 2015. Subjects were exposed for 3 h in random order to 0 ppb (filtered air), 70 ppb ozone, and 120 ppb ozone, alternating 15 min of moderate exercise with 15 min of rest. A suite of cardiovascular endpoints was measured the day before, the day of, and up to 22 h after each exposure. Mixed effect linear and logit models evaluated the impact of exposure to ozone on pre-specified primary and secondary outcomes. Site and time were included in the models. RESULTS: We found no significant effects of ozone exposure on any of the primary or secondary measures of autonomic function, repolarization, ST segment change, arrhythmia, or vascular function (systolic blood pressure and flow-mediated dilation). CONCLUSIONS: In this multicenter study of older healthy women and men, there was no convincing evidence for acute effects of 3-h, relatively low-level ozone exposures on cardiovascular function. However, we cannot exclude the possibility of effects with higher ozone concentrations, more prolonged exposure, or in subjects with underlying cardiovascular disease. Further, we cannot exclude the possibility that exposure to ambient ozone and other pollutants in the days before the experimental exposures obscured or blunted cardiovascular biomarker response to the controlled ozone exposures.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Exposición por Inhalación , Ozono/efectos adversos , Anciano , Contaminantes Atmosféricos/análisis , Estudios Cruzados , Prueba de Esfuerzo/efectos de los fármacos , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Exposición por Inhalación/análisis , Exposición por Inhalación/estadística & datos numéricos , Masculino , Persona de Mediana Edad
8.
Am J Respir Crit Care Med ; 197(10): 1319-1327, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29232153

RESUMEN

RATIONALE: Acute respiratory effects of low-level ozone exposure are not well defined in older adults. OBJECTIVES: MOSES (The Multicenter Ozone Study in Older Subjects), although primarily focused on acute cardiovascular effects, provided an opportunity to assess respiratory responses to low concentrations of ozone in older healthy adults. METHODS: We performed a randomized crossover, controlled exposure study of 87 healthy adults (59.9 ± 4.5 yr old; 60% female) to 0, 70, and 120 ppb ozone for 3 hours with intermittent exercise. Outcome measures included spirometry, sputum markers of airway inflammation, and plasma club cell protein-16 (CC16), a marker of airway epithelial injury. The effects of ozone exposure on these outcomes were evaluated with mixed-effect linear models. A P value less than 0.01 was chosen a priori to define statistical significance. MEASUREMENTS AND MAIN RESULTS: The mean (95% confidence interval) FEV1 and FVC increased from preexposure values by 2.7% (2.0-3.4) and 2.1% (1.3-2.9), respectively, 15 minutes after exposure to filtered air (0 ppb). Exposure to ozone reduced these increases in a concentration-dependent manner. After 120-ppb exposure, FEV1 and FVC decreased by 1.7% (1.1-2.3) and 0.8% (0.3-1.3), respectively. A similar concentration-dependent pattern was still discernible 22 hours after exposure. At 4 hours after exposure, plasma CC16 increased from preexposure levels in an ozone concentration-dependent manner. Sputum neutrophils obtained 22 hours after exposure showed a marginally significant increase in a concentration-dependent manner (P = 0.012), but proinflammatory cytokines (IL-6, IL-8, and tumor necrosis factor-α) were not significantly affected. CONCLUSIONS: Exposure to ozone at near ambient levels induced lung function effects, airway injury, and airway inflammation in older healthy adults. Clinical trial registered with www.clinicaltrials.gov (NCT01487005).


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Inflamación/inducido químicamente , Inflamación/fisiopatología , Exposición por Inhalación/efectos adversos , Pulmón/fisiopatología , Ozono/efectos adversos , Anciano , Anciano de 80 o más Años , California , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , New York , North Carolina
9.
Eur Respir J ; 49(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077473

RESUMEN

The American Thoracic Society has previously published statements on what constitutes an adverse effect on health of air pollution in 1985 and 2000. We set out to update and broaden these past statements that focused primarily on effects on the respiratory system. Since then, many studies have documented effects of air pollution on other organ systems, such as on the cardiovascular and central nervous systems. In addition, many new biomarkers of effects have been developed and applied in air pollution studies.This current report seeks to integrate the latest science into a general framework for interpreting the adversity of the human health effects of air pollution. Rather than trying to provide a catalogue of what is and what is not an adverse effect of air pollution, we propose a set of considerations that can be applied in forming judgments of the adversity of not only currently documented, but also emerging and future effects of air pollution on human health. These considerations are illustrated by the inclusion of examples for different types of health effects of air pollution.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Biomarcadores , Exposición a Riesgos Ambientales/efectos adversos , Enfermedades Cardiovasculares/etiología , Humanos , Guías de Práctica Clínica como Asunto , Factores de Riesgo , Sociedades Médicas , Estados Unidos
11.
J Infect Dis ; 214(11): 1658-1665, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27601618

RESUMEN

The current studies were undertaken to determine the susceptibility of human alveolar macrophages (AMs) to influenza A virus (IAV) infection in comparison with autologous peripheral blood-derived monocytes-macrophages (PBMs). AMs and PBMs were exposed to IAV in vitro and examined for their ability to bind and internalize IAV, and synthesize viral proteins and RNA. PBMs but not AMs demonstrated binding and internalization of the virus, synthesizing viral proteins and RNA. Exposure of AMs in the presence of a sialidase inhibitor or anti-IAV antibody resulted in viral protein synthesis by the cells. Exposure of AMs to fluorescein isothiocyanate-labeled IAV in the presence of anti-fluorescein isothiocyanate antibody also resulted in viral protein synthesis. Thus, human AMs are apparently not susceptible to direct infection by a human IAV but are likely to be infected indirectly in the setting of exposure in the presence of antibody that binds the challenging strain of IAV.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/patología , Macrófagos Alveolares/virología , Tropismo Viral , Internalización del Virus , Replicación Viral , Adulto , Anticuerpos Antivirales/inmunología , Células Cultivadas , Femenino , Humanos , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Macrófagos Alveolares/inmunología , Masculino , Acoplamiento Viral , Adulto Joven
12.
Environ Res ; 149: 15-22, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27174779

RESUMEN

BACKGROUND: Previous studies suggest that pathways reducing oxidative stress may have a protective effect against adverse cardiac responses associated with ambient PM. However, few studies have directly assessed total antioxidant capacity (TAC) as a potential effect modifier of cardiac responses to increased ambient PM. OBJECTIVES: We examined if TAC modifies the association between ambient PM and markers of heart rate variability (HRV), repolarization, systemic inflammation, and systolic blood pressure (SBP) in post-infarction patients. METHODS: We recruited 76 patients with a recent coronary event (myocardial infarction or unstable angina) who participated in a cardiac rehabilitation program from June 2006 to November 2009 in Rochester, New York. Ambient fine particle (PM2.5,≤2.5µm in aerodynamic diameter), accumulation mode particle (AMP, 100-500nm) and ultrafine particle (UFP, 10-100nm) concentrations were measured continuously by fixed-site monitors. Markers of HRV and repolarization were measured by continuous Holter electrocardiogram (ECG) recordings before and during exercise sessions of the rehabilitation program. Blood pressure was measured and venous blood samples were collected before exercise to measure TAC and inflammation markers. We applied linear mixed models to assess changes in markers of HRV, repolarization, systemic inflammation, and SBP associated with increased PM concentrations in the low, medium and high TAC tertile groups, after adjusting for covariates including temperature, calendar time since the beginning of the study, visit number, month of year, and hour of day. RESULTS: Based on subject-visits with available TAC, we observed increases in SBP, C-reactive protein, and fibrinogen, and decreases in rMSSD (square root of the mean of the sum of the squared differences between adjacent normal to normal intervals) and SDNN (standard deviation of normal to normal beat intervals) associated with increased PM2.5, AMP and UFP in the previous 6-120h (e.g. change in SBP associated with each interquartile range (IQR) increase in PM2.5 lagged 0-5h was 1.27mmHg [95%CI: 0.09, 2.46mmHg]). However, we did not observe a consistent pattern of effect measure modification by TAC for any combination of pollutant and outcome (e.g. changes in SBP associated with each IQR increase in PM2.5 lagged 0-5h for the low, medium and high TAC tertile groups were 1.93mmHg [95%CI: 0.23, 3.63 mmHg], -0.31 mmHg [95%CI: -2.62, 2.01 mmHg], and 1.29mmHg [95%CI: -0.64, 3.21 mmHg], respectively. P for interaction=0.28). CONCLUSIONS: In a post-infarction population, total antioxidant capacity does not appear to modify the association between biomarkers of heart rate variability, repolarization, systemic inflammation, and systolic blood pressure and ambient PM concentrations in the previous 6-120h.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales , Cardiopatías/inducido químicamente , Material Particulado/toxicidad , Anciano , Anciano de 80 o más Años , Antioxidantes/metabolismo , Presión Sanguínea/efectos de los fármacos , Rehabilitación Cardiaca/estadística & datos numéricos , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Masculino , Persona de Mediana Edad , New York , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Factores de Tiempo
13.
J Toxicol Environ Health A ; 79(6): 287-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27029326

RESUMEN

Increased particulate matter (PM) air pollutant concentrations have been associated with platelet activation. It was postulated that elevated air pollutant concentrations would be associated with increases in measures of platelet function and that responses would be blunted when taking aspirin and/or fish oil. Data from a sequential therapy trial (30 subjects with type 2 diabetes mellitus), with 4 clinic visits (first: no supplements, second: aspirin, third: omega-3 fatty acid supplements, fourth: aspirin and omega-3 fatty acids) per subject, were utilized. Using linear mixed models, adjusted for relative humidity, temperature, visit number, and season, changes in three platelet function measures including (1) aggregation induced by adenosine diphosphate (ADP), (2) aggregation induced by collagen, and (3) thromboxane B2 production were associated with interquartile range (IQR) increases in mean concentrations of ambient PM2.5, black carbon, ultrafine particles (UFP; 10-100 nm), and accumulation mode particles (AMP; 100-500 nm) in the previous 1-96 h. IQR increases in mean UFP and AMP concentrations were associated with significant decreases in platelet response, with the largest being a -0.43 log(pg/ml) decrease in log(thromboxane B2) (95% CI = -0.8, -0.1) associated with each 582-particles/cm(3) increase in AMP, and a -1.7 ohm reduction in collagen-induced aggregation (95% CI = -3.1, -0.3) associated with each 2097-particles/cm(3) increase in UFP in the previous 72 h. This UFP effect on thromboxane B2 was significantly muted in diabetic subjects taking aspirin (-0.01 log[pg/ml]; 95% CI = -0.4, 0.3). The reason for this finding remains unknown, and needs to be investigated in future studies.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Aspirina/farmacología , Plaquetas/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Material Particulado/toxicidad , Inhibidores de Agregación Plaquetaria/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Colágeno/farmacología , Diabetes Mellitus Tipo 2/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Agregación Plaquetaria/efectos de los fármacos , Pruebas de Función Plaquetaria , Tromboxano B2/biosíntesis , Tiempo (Meteorología)
14.
Res Rep Health Eff Inst ; (186): 5-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-28661614

RESUMEN

INTRODUCTION: Previous studies have examined changes in heart rate variability (HRV*) and repolarization associated with increased particulate matter (PM) concentrations on the same and previous few days. However, few studies have examined whether these health responses to PM occur within a few hours or even less. Moreover, it is not clear whether exposure of subjects to ambient or-controlled PM concentrations both lead to similar health effects or whether any of the subjects' individual characteristics modify any of their responses to PM. The aims of the cur- rent study were to investigate whether exposure to PM was associated with rapid changes (< 60 minutes or con- current hour up to a delay of 6 hours) in markers of car- diac rhythni or changes in total antioxidant capacity (a marker of protection against oxidative stress) and whether any PM effects on cardiac rhythm markers were modified by total antioxidant capacity, age, obesity, smoking, hypertension, exertion, prior myocardial infarction (MI), or medication. METHODS: We obtained data from a completed study in Augsburg, Germany (a panel study in N= 109 subjects, including a group with type 2 diabetes or impaired glucose tolerance [IGT; also known as prediabetes]) and a group of other- wise healthy subjects with a potential genetic susceptibil- ity to detoxifying and inflammatory pathways (Hampel et al. 2012b), as well as three completed studies in Rochester, New York (the REHAB panel study of N= 76 postinfarction patients in a cardiac rehabilitation pro- gram [Rich et al. 2012b]; the UPDIABETES study of con- trolled exposure to ultrafine particles [UFPs, particles with an aerodynamic diameter < 100 nm] of N = 19 patients with type 2 diabetes [Stewart et al. 2010; Vora et al. 2014j; and the UPCON controlled-exposure study of concentrated UFP exposure in N = 20 young, healthy, life- time nonsmokers). Data included 5-minute and 1-hour values for HRV and repolarization parameters from elec- trocardiogram (ECG) recordings and total antioxidant capacity measured in stored blood samples. Ambient con- centrations of UFPs, accumulation-mode particles (AMP, particles with an aerodynamic diameter of 100-500 nm), fine PM (PM2.5, particles with an aerodynamic diameter 2.5 pm), and black carbon (BC) were also available. We first conducted factor analyses in each study to find subgroups of correlated ECG outcomes and to reduce the number of outcomes examined in our statistical models. We then restricted the statistical analyses to the factors and representative.outcomes that were common to all four studies, including total HRV (measured as the standard deviation of normal-to-normal [NN] beat intervals [SDNNj), parasympathetic modulation (measured as the root mean square of the successive differences [RMSSD between adjacent NN beat intervals), and T-wave morphol- ogy (measured as T-wave complexity). Next, we used addi- tive mixed models to estimate the change in each outcome associated with increased pollutant concentrations in the . concurrent and previous 6 hours and with 5-minute inter- vals up to the previous 60 minutes, accounting for the correlation of repeated outcome measures for each subject and adjusting for time trend, hour of the day, temperature, relative humidity, day of the week, month, and visit number. Because multiple comparisons were an issue in our. analyses, we used a discovery-and-replication approach to draw conclusions across studies for each research question. RESULTS: In the Augsburg study, interquartile range (IQR) increases in UFP concentrations lagged 2 to 5 hours were associated with 1%-3% decreases in SDNN (e.g., lagged 3 hours in the group with a genetic susceptibility: -2.26%; 95% confidence interval [CI], -3.98% to -0.53%). In the REHAB study, similarly, IQR increases in UFP concentra- tions in the previous 5 hours were associated with < 3% decreases in SDNN (e.g., lagged 1 hour: -2.69%; 95% CI, -5.13% to -0.26%). We also found decreases in SDNN associated with IQR increases in total particle count-(a surrogate for UFP) in the UPDIABETES study (lagged 1 hour: -13.22%; 95% CI, -24.11% to -2.33%) but not in the UPCON study. In the Augsburg study, IQR increases in PM2.5 concen- trations in the concurrent hour and lagged 1-5 hours, AMP concentrations lagged 1 and 3 hours, and BC con- centrations lagged 1-5 hours were associated with -1%-5% decreases in SDNN (e.g., PM2.5 lagged 2 hours in the group with diabetes or IGT: -4.59%; 95% CI, -7.44% to -1.75%). In the REHAB study, IQR increases in PM2.5 concentrations lagged 5 and 6 hours and AMP concentra- tions in the concurrent hour and lagged up to 5 hours were associated with 1%-2% decreases in SDNN (e.g., PM2.5 lagged 4 hours: -2.13%; 95% CI, -3.91% to -0.35%). In the Augsburg study, IQR increases in PM2.5 concen- trations in the concurrent hour and BC lagged 1 and 6 hours were associated with 3%-7% decreases in RMSSD (e.g., PM2.5 concurrent hour in the group with diabetes or IGT: -7.20%; 95% CI, -12.11% to -2.02%). In the REHAB study, similarly, increases in PM2.5 concen- trations lagged 4 to 6 hours-though not AMP or BC con- centrations at any lag hour-were associated with -2.5%-3.5% decreases in RMSSD (e.g., PM2.5 lagged 5 hours: -3.49%; 95% CI, -6.13% to -0.84%). We did not find consistent evidence of any pollutant effects on T-wave complexity in 1-hour recordings. For 5-minute record- ings, there was no consistent evidence of UFP effects on SDNN, RMSSD, or T-wave complexity at any 5-minute interval within 60 minutes. We further concluded that these replicated hourly effects of UFP and PM2.5 on short-term measures of SDNN and RMSSD generally did not differ between the groups in the studies (i.e., type 2 diabetes, pre-diabetes/IGT, post- infarction, and healthy subjects). Last, we found no con- sistent evidence of effects of any pollutant on total anti- oxidant capacity and no consistent evidence of modification of our PM2.5-outcome associations by any of the potential effect modifiers. ONCLUSIONS: Increased UFP concentrations were associated with decreased SDNN in both of the panel studies and one of the two controlled-exposure studies. We also found that decreased SDNN was associated with both increased PM2.5 and AMP concentrations in the previous 6 hours in the panel studies and that decreased RMSSD was associ- ated with increased PM2.5 concentrations in the previous 6 hours in the panel studies. We therefore concluded that the research questions were replicated. Our findings suggest that both UFPs and PM2.5 are associated with autonomic dysfunction within hours of exposure, which may in part. explain the previously reported risk of acute cardiovascular events associated with increased PM in the previous few hours. Despite the heterogeneity of the study populations,and protocols, our findings provided consistent evidence for the induction of rapid pathophysiological responses by UFPs and PM2.5- The absence of consistent associations between UFPs, PM2.5, and these outcomes when examining shorter time intervals indicates that the 5- to 60-minute responses may be less pronounced than the responses occurring within hours. However, the findings from the 5-minute intervals may have been affected by the variety of proto- cols and conditions from study to study as well as by the potential effects of underlying diseases (e.g., healthy indi- viduals versus individuals with diabetes or a recent cor- onary artery. event), physical activity, circadian rhythms, stress, and/or medications.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Electrocardiografía Ambulatoria , Frecuencia Cardíaca/efectos de los fármacos , Sistema Nervioso Parasimpático/efectos de los fármacos , Material Particulado/toxicidad , Anciano , Biomarcadores , Exposición a Riesgos Ambientales , Análisis Factorial , Femenino , Alemania , Humanos , Masculino , Persona de Mediana Edad , New York , Tamaño de la Partícula , Factores Desencadenantes , Factores de Tiempo
15.
Inhal Toxicol ; 27(2): 113-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25600221

RESUMEN

CONTEXT: Exposure to ozone has acute respiratory effects, but few human clinical studies have evaluated cardiovascular effects. OBJECTIVE: We hypothesized that ozone exposure alters pulmonary and systemic vascular function, and cardiac function, with more pronounced effects in subjects with impaired antioxidant defense from deletion of the glutathione-S-transferase M1 gene (GSTM1 null). METHODS: Twenty-four young, healthy never-smoker subjects (12 GSTM1 null) inhaled filtered air, 100 ppb ozone and 200 ppb ozone for 3 h, with intermittent exercise, in a double-blind, randomized, crossover fashion. Exposures were separated by at least 2 weeks. Vital signs, spirometry, arterial and venous blood nitrite levels, impedance cardiography, peripheral arterial tonometry, estimation of pulmonary capillary blood volume (Vc), and blood microparticles and platelet activation were measured at baseline and during 4 h after each exposure. RESULTS: Ozone inhalation decreased lung function immediately after exposure (mean ± standard error change in FEV1, air: -0.03 ± 0.04 L; 200 ppb ozone: -0.30 ± 0.07 L; p < 0.001). The immediate post-exposure increase in blood pressure, caused by the final 15-min exercise period, was blunted by 200 ppb ozone exposure (mean ± standard error change for air: 16.7 ± 2.6 mmHg; 100 ppb ozone: 14.5 ± 2.4 mmHg; 200 ppb ozone: 8.5 ± 2.5 mmHg; p = 0.02). We found no consistent effects of ozone on any other measure of cardiac or vascular function. All results were independent of the GSTM1 genotype. CONCLUSIONS: We did not find convincing evidence for early acute adverse cardiovascular consequences of ozone exposure in young healthy adults. The ozone-associated blunting of the blood pressure response to exercise is of unclear clinical significance.


Asunto(s)
Presión Sanguínea , Sistema Cardiovascular/efectos de los fármacos , Eliminación de Gen , Glutatión Transferasa/genética , Ozono/administración & dosificación , Ozono/efectos adversos , Adolescente , Adulto , Filtros de Aire , Antioxidantes/administración & dosificación , Estudios Cruzados , Método Doble Ciego , Ejercicio Físico , Femenino , Genotipo , Glutatión Transferasa/metabolismo , Voluntarios Sanos , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Nitritos/sangre , Activación Plaquetaria/efectos de los fármacos , Espirometría , Pruebas de Toxicidad Aguda , Adulto Joven
16.
Part Fibre Toxicol ; 11: 31, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25028096

RESUMEN

BACKGROUND: Diabetes may confer an increased risk for the cardiovascular health effects of particulate air pollution, but few human clinical studies of air pollution have included people with diabetes. Ultrafine particles (UFP, ≤100 nm in diameter) have been hypothesized to be an important component of particulate air pollution with regard to cardiovascular health effects. METHODS: 17 never-smoker subjects 30-60 years of age, with stable type 2 diabetes but otherwise healthy, inhaled either filtered air (0-10 particles/cm3) or elemental carbon UFP (~107 particles/cm3, ~50 ug/m3, count median diameter 32 nm) by mouthpiece, for 2 hours at rest, in a double-blind, randomized, crossover study design. A digital 12-lead electrocardiogram (ECG) was recorded continuously for 48 hours, beginning 1 hour prior to exposure. RESULTS: Analysis of 5-minute segments of the ECG during quiet rest showed reduced high-frequency heart rate variability with UFP relative to air exposure (p = 0.014), paralleled by non-significant reductions in time-domain heart rate variability parameters. In the analysis of longer durations of the ECG, we found that UFP exposure increased the heart rate relative to air exposure. During the 21- to 45-hour interval after exposure, the average heart rate increased approximately 8 beats per minute with UFP, compared to 5 beats per minute with air (p = 0.045). There were no UFP effects on cardiac rhythm or repolarization. CONCLUSIONS: Inhalation of elemental carbon ultrafine particles alters heart rate and heart rate variability in people with type 2 diabetes. Our findings suggest that effects may occur and persist hours after a single 2-hour exposure.


Asunto(s)
Carbono/efectos adversos , Diabetes Mellitus Tipo 2/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Corazón/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Material Particulado/efectos adversos , Adulto , Estudios Cruzados , Diabetes Mellitus Tipo 2/diagnóstico , Método Doble Ciego , Electrocardiografía , Femenino , Corazón/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Minnesota , Tamaño de la Partícula , Medición de Riesgo , Factores de Tiempo
17.
Part Fibre Toxicol ; 11: 1, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24382024

RESUMEN

BACKGROUND: We and others have shown that increases in particulate air pollutant (PM) concentrations in the previous hours and days have been associated with increased risks of myocardial infarction, but little is known about the relationships between air pollution and specific subsets of myocardial infarction, such as ST-elevation myocardial infarction (STEMI) and non ST-elevation myocardial infarction (NSTEMI). METHODS: Using data from acute coronary syndrome patients with STEMI (n = 338) and NSTEMI (n = 339) and case-crossover methods, we estimated the risk of STEMI and NSTEMI associated with increased ambient fine particle (<2.5 um) concentrations, ultrafine particle (10-100 nm) number concentrations, and accumulation mode particle (100-500 nm) number concentrations in the previous few hours and days. RESULTS: We found a significant 18% increase in the risk of STEMI associated with each 7.1 µg/m³ increase in PM2.5 concentration in the previous hour prior to acute coronary syndrome onset, with smaller, non-significantly increased risks associated with increased fine particle concentrations in the previous 3, 12, and 24 hours. We found no pattern with NSTEMI. Estimates of the risk of STEMI associated with interquartile range increases in ultrafine particle and accumulation mode particle number concentrations in the previous 1 to 96 hours were all greater than 1.0, but not statistically significant. Patients with pre-existing hypertension had a significantly greater risk of STEMI associated with increased fine particle concentration in the previous hour than patients without hypertension. CONCLUSIONS: Increased fine particle concentrations in the hour prior to acute coronary syndrome onset were associated with an increased risk of STEMI, but not NSTEMI. Patients with pre-existing hypertension and other cardiovascular disease appeared particularly susceptible. Further investigation into mechanisms by which PM can preferentially trigger STEMI over NSTEMI within this rapid time scale is needed.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Electrocardiografía/efectos de los fármacos , Infarto del Miocardio/inducido químicamente , Material Particulado/toxicidad , Síndrome Coronario Agudo/inducido químicamente , Síndrome Coronario Agudo/patología , Factores de Edad , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Estudios de Casos y Controles , Intervalos de Confianza , Estudios Cruzados , Interpretación Estadística de Datos , Etnicidad , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/patología , New York , Estudios Prospectivos , Proyectos de Investigación , Volumen Sistólico , Resultado del Tratamiento , Tiempo (Meteorología)
18.
Inhal Toxicol ; 24(12): 831-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23033996

RESUMEN

Exposure to air pollution is associated with increased morbidity and mortality from cardiovascular disease. We hypothesized that increases in exposure to ambient air pollution are associated with platelet activation and formation of circulating tissue factor-expressing microparticles. We studied 19 subjects with type 2 diabetes, without clinical evidence of cardiovascular disease, who had previously participated in a human clinical study of exposure to ultrafine particles (UFP). Blood was obtained for measurements of platelet activation following an overnight stay in the Clinical Research Center, prior to each of their two pre-exposure visits. Air pollution and meteorological data, including UFP counts, were analyzed for the 5 days prior to the subjects' arrival at the Clinical Research Center. Contrary to expectations, increases in UFP were associated with decreases in surface expression of platelet activation markers. The number of platelet-leukocyte conjugates decreased by -80 (95% confidence interval (CI) -123 to -37, p = 0.001) on the first lag day (20-44 h prior to the blood draw) and by -85 (CI -139 to -31, p = 0.005) on combined lag days 1 to 5, per interquartile range (IQR) increase in UFP particle number (2482). However, levels of soluble CD40L increased 104 (CI 3 to 205, p = 0.04) pg/ml per IQR increase in UFP on lag day 1, a finding consistent with prior platelet activation. We speculate that, in people with diabetes, exposure to UFP activates circulating platelets within hours of exposure, followed by an increase in soluble CD40L and a rebound reduction in circulating platelet surface markers.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Enfermedades Cardiovasculares/inducido químicamente , Diabetes Mellitus Tipo 2/sangre , Regulación hacia Abajo/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Activación Plaquetaria/efectos de los fármacos , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Biomarcadores/sangre , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Ligando de CD40/sangre , Enfermedades Cardiovasculares/complicaciones , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/toxicidad , Solubilidad , Propiedades de Superficie , Regulación hacia Arriba/efectos de los fármacos
19.
Environ Health Perspect ; 120(8): 1162-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22542955

RESUMEN

BACKGROUND: Mechanisms underlying previously reported air pollution and cardiovascular (CV) morbidity associations remain poorly understood. OBJECTIVES: We examined associations between markers of pathways thought to underlie these air pollution and CV associations and ambient particle concentrations in postinfarction patients. METHODS: We studied 76 patients, from June 2006 to November 2009, who participated in a 10-week cardiac rehabilitation program following a recent (within 3 months) myocardial infarction or unstable angina. Ambient ultrafine particle (UFP; 10-100 nm), accumulation mode particle (AMP; 100-500 nm), and fine particle concentrations (PM2.5; ≤ 2.5 µm in aerodynamic diameter) were monitored continuously. Continuous Holter electrocardiogram (ECG) recordings were made before and during supervised, graded, twice weekly, exercise sessions. A venous blood sample was collected and blood pressure was measured before sessions. RESULTS: Using mixed effects models, we observed adverse changes in rMSSD [square root of the mean of the sum of the squared differences between adjacent normal-to-normal (NN) intervals], SDNN (standard deviation of all NN beat intervals), TpTe (time from peak to end of T-wave), heart rate turbulence, systolic and diastolic blood pressures, C-reactive protein, and fibrinogen associated with interquartile range increases in UFP, AMP, and PM2.5 at 1 or more lag times within the previous 5 days. Exposures were not associated with MeanNN, heart-rate-corrected QT interval duration (QTc), deceleration capacity, and white blood cell count was not associated with UFP, AMP, and PM2.5 at any lag time. CONCLUSIONS: In cardiac rehabilitation patients, particles were associated with subclinical decreases in parasympathetic modulation, prolongation of late repolarization duration, increased blood pressure, and systemic inflammation. It is possible that such changes could increase the risk of CV events in this susceptible population.


Asunto(s)
Cardiopatías/rehabilitación , Tamaño de la Partícula , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
20.
Crit Care ; 16(2): R38, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22390813

RESUMEN

INTRODUCTION: Ultrasound measurements of brachial artery reactivity in response to stagnant ischemia provide estimates of microvascular function and conduit artery endothelial function. We hypothesized that brachial artery reactivity would independently predict severe sepsis and severe sepsis mortality. METHODS: This was a combined case-control and prospective cohort study. We measured brachial artery reactivity in 95 severe sepsis patients admitted to the medical and surgical intensive care units of an academic medical center and in 52 control subjects without acute illness. Measurements were compared in severe sepsis patients versus control subjects and in severe sepsis survivors versus nonsurvivors. Multivariable analyses were also conducted. RESULTS: Hyperemic velocity (centimeters per cardiac cycle) and flow-mediated dilation (percentage) were significantly lower in severe sepsis patients versus control subjects (hyperemic velocity: severe sepsis = 34 (25 to 48) versus controls = 63 (52 to 81), P < 0.001; flow-mediated dilation: severe sepsis = 2.65 (0.81 to 4.79) versus controls = 4.11 (3.06 to 6.78), P < 0.001; values expressed as median (interquartile range)). Hyperemic velocity, but not flow-mediated dilation, was significantly lower in hospital nonsurvivors versus survivors (hyperemic velocity: nonsurvivors = 25 (16 to 28) versus survivors = 39 (30 to 50), P < 0.001; flow-mediated dilation: nonsurvivors = 1.90 (0.68 to 3.41) versus survivors = 2.96 (0.91 to 4.86), P = 0.12). Lower hyperemic velocity was independently associated with hospital mortality in multivariable analysis (odds ratio = 1.11 (95% confidence interval = 1.04 to 1.19) per 1 cm/cardiac cycle decrease in hyperemic velocity; P = 0.003). CONCLUSIONS: Brachial artery hyperemic blood velocity is a noninvasive index of microvascular function that independently predicts mortality in severe sepsis. In contrast, brachial artery flow-mediated dilation, reflecting conduit artery endothelial function, was not associated with mortality in our severe sepsis cohort. Brachial artery hyperemic velocity may be a useful measurement to identify patients who could benefit from novel therapies designed to reverse microvascular dysfunction in severe sepsis and to assess the physiologic efficacy of these treatments.


Asunto(s)
Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiopatología , Sepsis/fisiopatología , Área Bajo la Curva , Velocidad del Flujo Sanguíneo/fisiología , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Reproducibilidad de los Resultados , Sepsis/mortalidad , Tasa de Supervivencia , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...